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The kminar stream of incompressible fluid flowing over the surface of a 
semi-idbite right circular cone at moderate Reynolds numbers is inve#.igat- 
ed. An asymptotic expanoion which takes into account the interaction between 
the boundary layer and the outer flow is derived. The interaction results 
in the appwance of a transverse velocity component in the outer inviscid re- 
gion. 

The boundary layer theory does not allow for the derivation of an explicit definit- 
icn of seccnd order effects in streams, viz. that of the boundary layer and of surf- 
ace geometry [l]. These effects were taken into account in [2,3] in the case of pla- 
ne streams. 

The limit case is represented by the propagation of a fan-shaped stream over a 
plane wall; a self-similar solution of this problem appeared in [4]. Comparison of 
that solution with expedmental data in [5] shows that in the outer region of the bound- 
ary layer the former exceeds the latter by some 2!%. 

The effect of bumdky layer displacement and of the cone apex angle ou the flow 
and heat exchange for an axisymmetric laminar stream flowing over a right circular 
cone is established here using the method of joining asymptotic expansions. 

1, Statement of the problem and basic equations. 
We consider the problem of propagation of an axisymmetric laminar stream of viscous 
incompressible fluid over the heated surface of a semi-infinite right circular cone 
with apex half-angle a~. The stream flows from an inffnitely narrow ring source 
at the cone nose into the space filled with fluid of the same properties as those of the 
stream. The surface temperature T m is constant and different from the fluid temp- 
erature T, away from the cone. We locate the coordinate origin at the stream sour- 
ce, with the x -axis directed along the cone genera&ix and the Y -axis normal to 
ft. We use dimensionless equations with the characteristic dimension L taken as the 
unit of hq.th, projections of velocity on the I - and y-axes are normalized with 
reJpect to velocity u at the cross section at the longitudinal coordinate L, and 
the excess pressure and temperature are normalized with respect to pp (p is the 
density of the stream fluid) and T, - T, * nrpectively. Esuatim a& boundary 
~t~~ditionr for dimemionless velocity projections u and u, pressure p and temPerat- 
ure Q in the absence of viscous diss&ation and inner heat release are of the form 

cu 

%x -I- vuv = - px + R-’ (224, + 2x-lux + x-l [x (c, + u,)],} ( 1.1) 
uvx -I- WV = - P,, + R-’ (x-l [x (v, + uv)lx + 2x-l (w,),} 
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ue, + ve, = FFx’l w%c), 4 (@AJ 
wx + @x)y = 0, x=x+yctgao 

u=v =o, e=1, y=o, x>o (1.2) 

l&dy<oo, e=o, y=o, x<o 
0 

u~O,v-rO,p-t0,e-tO,r~~,a#o 

?-VW, a = arctg (y /x) 

With R + 00 problem (1.1). (1.2) in the terminology of [6] is a problem of 
singular perturbations. We use E = R-‘/z as the perturbations parameter. 

In_conformity with the method of joining asymptotic expansions the flow region is 

divided into two: the inner (boundary layer region) and the outer regions. .For investig- 

ating the behavior of solutions in the boundary layer we introduce in the nonuniformity 

region the transverse coordinate of order unity 

Y = Ye (1.3) 

In the boundary layer the solution is of the form of asymptotic expansions with 

R --f 00 and fixed x and Y 

u = Us (5,. Y) + e 241 (5, Y) + . . . 
v = ev, (x,, Y) + A, (2, Y) + . . . 

P = po (2, Y) 4 8 p1 (5, Y) + - -- 
9 = 80 (5, Y) & (z, Y) + . . . 

( 1.4) 

Outside the boundary layer the solution is of the form 

u = us (5, y) + a ur (x, 9) + . . . . v = VII (3, v) + 
( 1.5) 

8 VI (5, y) + --* 

P = Pcl (x, y) + EP, (2, y) + . ..) 0 ss 0 
The rule of passing to limit determines the applicability region of each of expans- 

ions (1.4) and (1.5). 

2. T h e z e r o a p p r o x i m a t i o n, On the assumption of a vortex-free 

outer flow for the stream function CD0 of the outer flow zero approximation form( 1.5) 

and (1.1) we have 

Es@,, = 0 (2.1) 

E2 = 82 I 6x2 - x-V / dx + B2 / 8y2 - x-l ctg a& I f9y 

Since the boundary conditions are zero, we have without loss of generality 

@O (x9 Y) = 0 (2.2) 

The joining procedure determines boundary conditions at the outer boundary of the 
boundary layer 

$lY (5, 00) = 0 (2.3) 



26 N.N. Kortikov and I, 8. Novikova 

The substitution of (1.4) into (1.1) yields a system of equations that defines the 
boundary layer zero approximation 

+oYhcY - 4JO&OPY - f%Y = Z~OYYY (2.4) 

$OYBO, - IpO$%tY = Pf-‘&JYY 

240 = x-lgoy, UO = - z-lqox 

which admits the self-similar solution [1] of the form 

90 (x, Y) = As?‘* F (q), 00 (& Y) = H (rl) (2.5) 

q = BY x+4, A = 3-‘/a, B = 3”“ 

For the determination of F (q) and H (q) we have 

4Fm f FF” + 2F” =0, 4H”+PrFH=O (2.6) 

F(0) =I+ F’(0) -F’(m) = H(m) = 0, H(0) I 1, f P”Fdq = 1 
0 

At the outer boundary of the boundary layer 

F (rl) -F(m)+exp, q--t- (2.7) 

where exp denotes terms that are exponentially small when q + 00. 
Using the principle of minimal singularity [8] and the integral invariant E. [a] 

we can express the velocity scale and the Reynolds number in terms of thestream hiti- 
al characteristics as 

U = (E, I vLa)‘$ R = (E, I v3L)‘lz (2.8) 

3. T h e f 1 t t t a p p r o x f m a t i o n. For the first approximation of the 
outer flow stream function @r we have 

EXP,1=0 (3.1) 

Using (2.7) we determine boundary conditions by the joining procedure 

@I (XV 0) = AF (00) x1$ z > 0; a, (x, 0) < oa, z < 0 (3.2) 

(I&+0, C&,+0, r+-00, a #0 

The solution of problem (3. l), (3.2) is of the form 

a1 (F, a) = AF (oo) ra’r 
sin (u + q,) P2 f.- COS (a + %)I 

sin a, P,l (- 609 s) 
(3.3) 

where P: (-co3 a) are generalized spherical functions of the second kind [7]. 
The outer boundary conditions for the first approximation of the boundary layer is 

determined using the joining procedure. Equations and boundary conditions for the 

inner region are of the form 

%YYY -t f%O&lYY - ~-14wjlxY - Z-lqJOdq~y + 
(3.4) 

2f9oY%Y + X-~ofYqkc = ctg aa (Y.q& - Yjc-‘lpoyyy -+ 
~-‘l*o&oY + mJOYY) 
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SOY% - ~OXQlY - ~Pr-lQlYY = qG33, - g&lx + 
5 ctg a0 Pr’l (Yz-%,yy + 2~-%,~) 

$1 = &y = 81 = 0, Y = 0 

* 1y ---* - AF (00) x-‘/* 
Pr2 (- co.9 aa) 

Y,l (- c0s.q ’ 

Problem (3.4) admits the self-similar solution 

8 l-PO, Y-,00 
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(3.5) 

System (3.4)‘reduces to a system of ordinary differential equations which is then 
used for determining functions f, G, h , and g. Functions f (11) and h (11) repres- 
ent the effect of boundary layer displacement, while G (~1) and g (q) define the effect 
of the cone surface geometry. 

Fig. 1 

Owing to the homogeneity of equations and boundary conditions the zero and first 
approximations for excess pressure in expansions (1.4) and (1.5) are identically zero. 

4. Discussion and comparison with experimental 
d a t a. Formulas for the longitudinal and transverse velocity and temperature compon- 
ents are of the form 

u* 
AB (E,, / vz*)+ 

= F’.rt E (4.1) 

v* 
‘I4 A (Eov / @=)‘I, = 

- (3F - 5nF’) - E (c@ cc0 [3qF - 5n2.F’ + 

+tG 1 - 6’) 
P$ (- cm CZG) 

+ 4 P,r (_ cos %) (f - tlf’) I 

1 8 = H -i- E LctF u,g f dF (co) 
Pz2 (- cos a,) 

Y,’ (- cos ad) 

The transverse velocity component induced in the outer flow by the boundary lay- 
er displacement action is define.d by 

I/,,4 (,!&vIx*~)‘:~ =- sina, + B-lf,11 cosa, (1 + (4.2) 
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B-1 FJ 
P22 [ - cos (a ‘- a,))] 

P,’ (- cos ao) 

Numerical computations of the derived system of ordinary differential equations 
were carried out using the method of reducing the boundary value problem to that of 
Cauchy [a], and tables [9] were used for determining the relations of spherical functi- 
ons. Profiles of dimensionless longitudinal velocities ii = u*[~E, / v~*y]-‘l are shown 
in Fig. 1, a for several apex half-angles of the cone and fixed parameter i. It is 
seen that with increasing angle cc, curve gradients increase, and the maximum vel- 
ocity increases and shifts toward the wall, Curve 1 conforms to the boundary layer 
theory; curves 2, 3, and 4 correspond to UO equal rrf 2, ni 3, and n/4, respect- 
ively. 

Fig. 2 Fig. 3 

Profiles of dimensionle8a longitudinal velocities are shown in Fig. 1, b for several 
values of parameter 5 in the case of a fan-shaped stream (a@ = 1~ t 2). The reduction 
of the maximum velocity and ita recession from the wall with increaafng parameter g 
(i. e. with scream distance from the cone nose with fixed other parameteral can be 
observed. Curve 1 conforms to the self-similar solution while curves 2 and 3 are 
for 5 = 0.005 and 0.01, respectively. 

The universal velocity profile calculated by the described here theory and by that 
of the boundary layer are shown in Fig. 2 by curves 1 and 2 , respectively. The 
velocity state is based on the maximum vetacity in a given cross secti, while that 
of the transverse coordinate is based on the ordinate at which velocity is equal to half 
of the maximal velocity. Experimental data obtained with a spreading fan-&aped 
hminar stream (53 are a~ shown there (small circka for R, = 6.53.W, and dots for 
R = 6.3.iO3 and RX*== U&Y ). A closer agreement between the proposed 

the& and experimental data is for q / ‘Q,,$ > 1.5. 
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Profiles of dimensionless transverse 
f*U velocity components T: = 4#[(Eov I (3 
e x5)1 -‘ld appear in Fig. 3 as functions of 

parameter E (curves 1 and 2 corres- 
pond to 5 equal 0.01 and 0.005, respe- 
ctively) for cxO = R I 2. With increas- 
ing % absolute values of velocity in the 

0.5 inner region increase, while in the outer 
region they decrease owing to interaction 
with the wall and surrounding fluid. 

Profiles of dimensionless temperature 
at Prandtl number Pr = 0.7 and sever- 
al apex half-angles of the cone with fix- 

0 f ‘I ia ed F; are plotted in Fig.4. Heat trans- 
fer from the cone surface becomes more 

Fig. 4 intensive with increasing angle 5@ 
(curves 1 and 2 correspond to a0 eq- 

ual n / 4 and A f 2, respectively; curve 3 conforms to the boundary layer theory). 
The analysis of longitudinal stream flow over a circular cone shows that displace- 

ment of the boundary layer contributes to the decrease of friction stress at the wall 
and of heat transfer from the cone surface, while the effect of the cone apex half-angle 
is opposite. The formula for friction stress at the cone surface, with higher approx- 
imations taken into account, is of the form 

%w 
ABE [_Eo~ f (Y%*ll J”” 

= 0.221+ 4 [ 0.408 ctg a, - 2.206 
P7” (-- co!? czof 2 
p 

7 
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